首页> 外文OA文献 >Unusual eigenvalue spectrum and relaxation in the L\'{e}vy Ornstein-Uhlenbeck process
【2h】

Unusual eigenvalue spectrum and relaxation in the L\'{e}vy Ornstein-Uhlenbeck process

机译:L \'{e} vy中不寻常的特征值谱和松弛   Ornstein-Uhlenbeck过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the rates of relaxation of a particle in a harmonic well, subjectto L\'evy noise characterized by its L\'evy index $\mu$. Using the propagatorfor this L\'evy Ornstein-Uhlenbeck process (LOUP), we show that the eigenvaluespectrum of the associated Fokker-Planck operator has the form $(n+m\mu)\nu$where $\nu$ is the force constant characterizing the well, and$n,m\in\mathbb{N}$. If $\mu$ is irrational, the eigenvalues are allnon-degenerate, but rational $\mu$ can lead to degeneracy. The maximumdegeneracy is shown to be two. The left eigenfunctions of the fractionalFokker-Planck operator are very simple while the right eigenfunctions may beobtained from the lowest eigenfunction by a combination of two differentstep-up operators. Further, we find that the acceptable eigenfunctions shouldhave the asymptotic behavior $|x|^{-n_1+n_2\;\mu}$ as $|x| \rightarrow \infty$,with $n_1$ and $n_2$ being positive integers, though this condition alone isnot enough to identify them uniquely. We also assert that the rates ofrelaxation of LOUP are determined by the eigenvalues of the associatedfractional Fokker-Planck operator and do not depend on the initial state if themoments of the initial distribution are all finite. If the initial distributionhas fat tails, for which the higher moments diverge, one would havenon-spectral relaxation, as pointed out by Toenjes et. al (Physical ReviewLetters, 110, 150602 (2013)).
机译:我们考虑了谐波井中颗粒的弛豫速率,该弛豫速率受到以“ L'evy指数”($ mu)为特征的L'evy噪声的影响。使用传播工具进行L'evy Ornstein-Uhlenbeck过程(LOUP),我们证明了相关Fokker-Planck算子的特征值谱形式为({n + m \ mu)\ nu $,其中$ \ nu $是力常数表征井,以及$ n,m \ in \ mathbb {N} $。如果$ \ mu $是非理性的,则特征值全都是非退化的,但是有理的$ \ mu $可以导致退化。最大简并度显示为两个。分数Fokker-Planck算子的左本征函数非常简单,而右本征函数可以通过结合两个不同的升序算子从最低本征函数中获得。此外,我们发现可接受的特征函数应具有渐近行为$ | x | ^ {-n_1 + n_2 \; \ mu} $作为$ | x |。 \ rightarrow \ infty $,其中$ n_1 $和$ n_2 $是正整数,尽管仅此条件不足以唯一地标识它们。我们还断言,LOUP的松弛速率由关联的分数Fokker-Planck算子的特征值确定,并且如果初始分布的阶跃都是有限的,则不依赖于初始状态。如Toenjes等人所指出的,如果初始分布具有高尾部发散的肥尾,则该高尾部将具有非频谱弛豫。 (Physical ReviewLetters,110,150602(2013))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号